Abstract

Muscle synergy analysis is commonly used to characterize motor control during dynamic tasks like walking. For clinical populations, such as children with cerebral palsy (CP), synergies are altered compared to nondisabled (ND) peers and have been associated with both function and treatment outcomes. However, the factors that contribute to altered synergies remain unclear. In particular, the extent to which synergies reflect altered biomechanics (e.g., changes in gait) or underlying neurologic injury is debated. To evaluate the effect that altered biomechanics have on synergies, we compared synergy complexity and structure while ND individuals (n = 14) emulated four common CP gait patterns (equinus, equinus-crouch, mild-crouch, and moderate crouch). Secondarily, we compared the similarity of ND synergies during emulation to synergies from a retrospective cohort of individuals with CP walking in similar gait patterns (n = 28 per pattern). During emulation, ND individuals recruited similar synergies as baseline walking. However, pattern-specific deviations in synergy activations and complexity emerged. In particular, equinus gait altered plantarflexor activation timing and reduced synergy complexity. Importantly, ND synergies during emulation were distinct from those observed in CP for all gait patterns. These results suggest that altered gait patterns are not primarily driving the changes in synergies observed in CP, highlighting the value of using synergies as a tool to capture patient-specific differences in motor control. However, they also highlight the sensitivity of both synergy activations and complexity to altered biomechanics, which should be considered when using these measures in clinical care.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.