Abstract

Adsorption and photocatalytic oxidation are promising technologies for eliminating antibiotics (e.g. tetracycline) in aquatic environments. However, traditional powdery nanomaterials are limited by drawbacks of difficult separation and lack of synergistic function, which do not conform to the practical demand. Herein, we developed a simple one-step gelation-pyrolysis route to fabricate hydrophilic three-dimensional (3D) porous photocatalytic adsorbent, in which CuO nanoparticles are uniformly and firmly embedded in nitrogen-doped (N-doped) porous carbon frameworks. The obtained N-doped carbon/CuO bulky composites exhibited excellent ability to adsorb tetracycline hydrochloride (TC), which was subsequently photo-oxidized under visible light. Their hydrophilic nature favors the adsorption processes toward TC, with a maximum adsorption capacity reaching 25.03 mg∙g−1. In addition, >94.4% of TC molecules could be photo-degraded in 4 h with good cycling efficiency after three consecutive tests. Finally, a reaction scheme for removal process of TC was proposed. The obtained 3D porous N-doped carbon/CuO nanocomposites show great promise for efficient removal of antibiotics in aqueous solution by synergistically utilizing adsorption and photocatalytic oxidation processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.