Abstract

The genus Streptomyces comprises the most important chitin decomposers in soil and revealing their chitinolytic machinery is beneficial for the conversion of chitinous wastes. Streptomyces sp. SCUT-3, a chitin-hydrolyzing and a robust feather-degrading bacterium, was isolated previously. The potential chitin-degrading enzymes produced by SCUT-3 were analyzed in the present study. Among these enzymes, three chitinases were successfully expressed in Pichia pastoris at comparatively high yields of 4.8 U/mL (SsExoChi18A), 11.2 U/mL (SsExoChi18B), and 17.8 U/mL (SsEndoChi19). Conserved motifs and constructive 3D structures of these three exo- and endochitinases were also analyzed. These chitinases hydrolyzed colloidal chitin to chitin oligomers. SsExoChi18A showed apparent synergic effects with SsEndoChi19 in colloidal chitin and shrimp shell hydrolysis, with an improvement of 29.3 % and 124.9 %, respectively. Compared with SsExoChi18B and SsEndoChi19, SsExoChi18A exhibited the strongest antifungal effects against four plant pathogens by inhibiting mycelial growth and spore germination. This study provided good candidates for chitinous waste-processing enzymes and antifungal biocontrol agents. These synergic chitin-degrading enzymes of SCUT-3 are good targets for its further genetical modification to construct super chitinous waste-degrading bacteria with strong abilities to hydrolyze both protein and chitin, thereby providing a direction for the future path of the chitinous waste recycling industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.