Abstract

The risk of harmful algal blooms (HABs) in the water recharged with reclaimed water is a bottleneck for water reuse. The suppression effects and mechanisms of the combination of UV-C and berberine on Microcystis aeruginosa and Scenedesmus obliquus in reclaimed water were investigated. Mono UV-C irradiation at 75 mJ cm−2 could suppress the growth of M. aeruginosa for 7 d and that at 90 mJ cm−2 could suppress the growth of S. obliquus for 5 d. UV-C irradiation combined with 0.2–2 mg L−1 berberine lengthened the inhibition period of M. aeruginosa to 10- > 22 d and that of S. obliquus to 7- > 22 d and induced more rapid lethal effects on the harmful microalgal cells, in significant synergetic patterns. The combination of UV-C and berberine suppressed total, intracellular and extracellular microcystin-LR (MC-LR) more effectively and decreased the MC-LR quota significantly, which further reduced the risks of microcystin production and release. Furthermore, synergetic mechanisms of the combined treatments were systematically investigated from the aspects of photosynthetic system (photosynthetic activity and pigments), metabolic activity (ATP and membrane potential), oxidation stress (reactive oxygen species (ROS) and glutathione (GSH)), and apoptosis-like cell death (phosphatidylserine (PS) ectropion, caspase-3 activity and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive rate). The combination treatment provided a joint attack of UV-C and berberine on photosynthetic transport chain of photosynthetic system II (PS II), and a synergetic pathway to achieve more severe disruptions in energy metabolism as well as aggravated oxidative stress. The accumulated ROS enhanced increases in programmed cell death (PCD) indicators of both microalgal species, which contributed to the enhancement effects on growth suppression. The results showed that the combination treatment achieved lower dose requirements of both UV-C irradiation and berberine for inducing the same inhibition effects on microalgal cells, which was promising to be applied in the HABs control of reclaimed water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.