Abstract

We propose a quantum error mitigation strategy for the variational quantum eigensolver (VQE) algorithm. We find, via numerical simulation, that very small amounts of coherent noise in VQE can cause substantially large errors that are difficult to suppress by conventional mitigation methods, and yet our proposed mitigation strategy is able to significantly reduce these errors. The proposed strategy is a combination of previously reported techniques, namely randomized compiling (RC) and zero-noise extrapolation (ZNE). Intuitively, randomized compiling turns coherent errors in the circuit into stochastic Pauli errors, which facilitates extrapolation to the zero-noise limit when evaluating the cost function. Our numerical simulation of VQE for small molecules shows that the proposed strategy can mitigate energy errors induced by various types of coherent noise by up to two orders of magnitude.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call