Abstract

P2-type sodium-deficient cathodes with the local Na–O–A configuration (A=Li, Mg, Zn, and vacancy) have attracted great interest due to their high capacity, stemming from the additional contribution of the oxygen-redox chemistry. However, such materials suffer from irreversible oxygen redox, oxygen release, structural distortion, and capacity fading. Herein, we introduce a dual-doping Li/Cu strategy to improve the properties of P2-NaxMnO2 cathode material. The unique sodium-storage mechanism in P2-Na0.75[Li0.15Cu0.15Mn0.7]O2 is verified using operando X-ray diffraction (o-XRD), X-ray absorption, X-ray photoelectron spectroscopy, and magnetic susceptibility methods. O-XRD and 7Li solid-state nuclear magnetic resonance analysis reveal that the P2 phase is maintained within charge and discharge; however, at high voltage, a small portion of O-type stacking faults are emerged due to the migration of Li to octahedral Na sites. Furthermore, various spectroscopy and magnetometry techniques combined with density functional theory calculation demonstrate the stable activity of cationic Cu2+/Cu3+ and Mn3+/Mn4+ and anionic O2−/(O2)n− redox processes. This work highlights the efficacy of Li and Cu doping in P2-type layered materials and the contribution of oxygen redox to additional capacity at high voltages, suggesting the potential for future development of cathode materials for Na-ion batteries with oxygen redox.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.