Abstract

For effective treatment and reuse of wastewater, removal of organochlorines is an important consideration. Oxidation or reduction of these compounds by one-component free radicals is difficult because of the high-energy barrier. Theoretical calculations predict that redox synergy can significantly lower the energy barriers. Hence, we developed an energy-efficient dual photoelectrode photoelectrochemical system wherein the oxidized and reduced radicals coexist. Taking p-chloroaniline as an example, the atomic hydrogen first initiates nucleophilic hydrodechlorination to form a critical intermediate followed by the electrophilic oxidation of the hydroxyl radical; the process shows stable free-energy changes. Compared to oxidation alone, the reaction rate and mineralization in the redox synergy system were ∼4.5 and ∼2.1 times higher, respectively. Nitrogen was also completely removed via this system. The full life cycle assessment with power consumption as the boundary showed that the proposed system was sustainable and highly energy efficient, ensuring its application in organochlorine wastewater treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.