Abstract
Manganese oxides and organic acids are key factors affecting arsenic mobility, but As(III) oxidation and adsorption in the coexistence of birnessite and low molecular weight organic acids (LMWOAs) are poorly understood. Herein, As(III) immobilization by birnessite was investigated with/without LMWOAs (including tartaric (TA), malate (MA), and succinic acids (SA) with two, one and zero hydroxyl groups, respectively). In the low-As(III) system with less Mn(II) production, LMWOAs generally inhibited As(III) oxidation. The slower decrease in As(III) concentration in TA-amended batches resulted from stronger bonding interaction between TA and edge sites, evidenced by higher removal of TA than MA and SA in solutions and the higher proportion of shifted C-OH component in solids. In high-As(III) systems with abundant Mn(II) production, higher concentrations of dissolved Mn and Mn(III) in LMWOA-amended batches than in LMWOA-free batches revealed that LMWOA-induced complexing dissolution caused the release of adsorbed Mn(II), which was conducive to As(III) oxidation and As(V) adsorption onto the edge sites. The lowest concentrations of dissolved Mn and Mn(III) in TA-amended batches indicated that the hydroxyl group constrained complexing dissolution. This study reveals that concentrations of produced Mn(II) determined the roles of LMWOAs in As(III) behavior and highlights the impacts of the hydroxyl group on arsenic mobility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.