Abstract

Antibiotics and antibiotic resistance genes (ARGs) are still a problem in biological treatment. Herein, we propose a synergetic strategy between microbes and dual-electric centers catalysts (CCN/Cu-Al2O3/ceramsite) for Ciprofloxacin (CIP)-contained (5 mg/L) water treatment in an up-flow biological filter. CIP was cleaved into small molecules by the catalyst, bringing a 57.6% removal and reducing 10.5% ARG. The characterization results verified that a Cu-π electrostatic force occurs on the catalyst surface, forming electron-rich areas around Cu and electron-poor areas at the carbon-doped g-C3N4 (CCN) aromatic ring. Thus, the electrons of adsorbed CIP were delocalized and then captured by the adsorbed extracellular polymeric substance at the electron-rich areas. Therefore, the synergetic process weakened the stress of CIP on bacteria and reduced ARG accumulation. It also enriched more electro-active bacteria on the surface of CCN/Cu-Al2O3/ceramsite, promoting the expression of extracellular electron transfer-related genes and reconstructing the energy metabolism mode. This result provides an opportunity for refractory antibiotic treatment in the biological process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call