7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.fuel.2023.129210
Copy DOIJournal: Fuel | Publication Date: Jul 18, 2023 |
Citations: 39 |
The use of lignocellulosic biomass pyrolysis to produce renewable fuels and high value-added chemicals can help alleviate the energy and resource crisis facing the world today. However, the direct pyrolysis of lignocellulosic biomass encountered some problems. For example, the bio-oil obtained from lignocellulosic biomass pyrolysis has the disadvantages of lower heating value with strong acidity due to the high oxygen contents of biomass. The use of biomass and other types of waste for co-pyrolysis can effectively solve these problems. Among them, the co-pyrolysis of lignocellulosic biomass and plastics has been extensively studied, the co-pyrolysis can not only improve the composition and quality of lignocellulosic biomass pyrolysis liquid products but also realize the reduction and resource utilization of waste plastic waste. This article summarizes the current research status of lignocellulosic biomass and plastic co-pyrolysis technology in recent years, focusing on the synergistic effect of lignocellulosic biomass pyrolysis and plastic pyrolysis, and prospects the development of biomass co-pyrolysis technology. In addition, the article also summarizes the catalysts used in the catalytic co-pyrolysis system of lignocellulosic biomass and plastics and the catalytic mechanisms involved. A comprehensive discussion on the CO2 emission of co-pyrolysis is presented. This review reveals the application prospects of pyrolysis technology in the pyrolysis of lignocellulose to produce fuels and chemicals, and also proposes future research directions in pyrolysis technology optimization and catalyst development.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.