Abstract

MgH2 has been attracted extensive attention because of its superior hydrogen storage performance and good reversibility. Further improvement of its kinetics and thermodynamic performances is needed to achieve widespread application. This article investigated the hydrogen storage properties of the thermodynamic optimized Mg-TiCrV hydrogen storage composite modified by layered Ti3C2 materials containing different 3d transition metal particles (Fe, Co, Ni). Mg-TiCrV/Ti3C2-X (X = Fe, Co, Ni) composites can absorb more than 5.30 wt% hydrogen within 1 min at 453 K under 3 MPa hydrogen pressure, and desorb more than 5.25 wt% hydrogen within 60 min at 543 K to 0.1 MPa. In particular, Mg-TiCrV/Ti3C2-Ni composite exhibited the best hydrogen storage properties, which can desorb 4.98 wt% hydrogen within 60 min at 523 K to 0.1 MPa hydrogen pressure and absorb 5.80 wt% hydrogen within 1 min at 453 K under 3 MPa hydrogen pressure. Structural analysis shows that the synergistic effect of layered material Ti3C2 and Ni particles promote the hydrogen release and uptake process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.