Abstract
Metal-organic frameworks (MOFs) and particularly their subclass - Zeolite Imidazolate Frameworks (ZIFs) - are used for a variety of applications including particularly energy storage. Highly porous MOFs mixed with non-wetting liquids can be used to form molecular springs (MS) for efficient mechanical and thermal energy storage/transformation. In this paper by means of high-pressure calorimetry the energetic characteristics of {ZIF-8 + water} MS were investigated in wide temperature and pressure ranges. Unexpectedly XRD measurements show that the concomitant effects of temperature and pressure on {ZIF-8 + water} MS leads to an irreversible change of the ZIF-8 structure, transforming its symmetry from cubic to orthorhombic. Whereas, previous studies have demonstrated the stability of ZIF-8 under either high pressure or high temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.