Abstract

Metal-organic frameworks (MOFs) and particularly their subclass - Zeolite Imidazolate Frameworks (ZIFs) - are used for a variety of applications including particularly energy storage. Highly porous MOFs mixed with non-wetting liquids can be used to form molecular springs (MS) for efficient mechanical and thermal energy storage/transformation. In this paper by means of high-pressure calorimetry the energetic characteristics of {ZIF-8 + water} MS were investigated in wide temperature and pressure ranges. Unexpectedly XRD measurements show that the concomitant effects of temperature and pressure on {ZIF-8 + water} MS leads to an irreversible change of the ZIF-8 structure, transforming its symmetry from cubic to orthorhombic. Whereas, previous studies have demonstrated the stability of ZIF-8 under either high pressure or high temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call