Abstract

The hydrogen evolution from ammonia borane is intriguing but challenging due to its sluggish kinetics. In this regard, the gold nanoparticles amalgamation with metal phosphides is speculated to be more efficient catalysts. Here, the catalysts Au/Ni2P and Au/CoP with the high synergetic effect of Au nanoparticles and metal phosphides were synthesized for ammonia borane hydrolysis. The activity of Au/Ni2P increases 4.8-fold (i.e., 0.08 to 0.40 L∙h−1) compared to pristine Ni2P, and the activity of Au/CoP increases 1.7-fold (i.e., 0.74 to 1.27 L∙h−1) compared to pristine CoP. This reveals that the synergetic effect of Auδ+ and (Ni2P) δ- is stronger than Auδ+ and (CoP) δ- which is manifested by XPS analysis. The kinetics exposes that the activation energy of Au/Ni2P (45.28 kJ∙mole-1) is greater than Au/CoP (31.45 kJ∙mole-1) and the TOF of Au/Ni2P is less than Au/CoP. This research work presents an effective approach for producing active sites of Auδ+ and (Ni2P & CoP) δ- for ammonia borane hydrolysis to enhance the H2 evolution rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call