Abstract

The mechanical properties of crystalline materials can be efficiently optimized using a hierarchical twinned structure. Conventional deformation mechanisms for coherent Σ3 boundaries generally involve three basic models: cross-slip, partial dislocation step, and full dislocation step. In this study, we report a novel deformation mechanism that allows the co-existence of de-twinning, phase transformations, grain rotation, and cracking, around a triple junction of twin boundaries in a hierarchical twinned high-entropy alloy. The deformation mechanisms in the reference high-entropy alloy (Fe-30Mn-10Co-10Cr at. %) were investigated using LAADF-STEM. The triple junction of the hierarchical twinned structure gradually deformed during in-situ strain and showed mechanisms significantly different from that observed in the purely twinned structures. These new mechanisms are referred to as “novel synergetic deformation mechanisms of hierarchical twin boundaries.” Understanding the fundamental mechanisms of the hierarchical twin boundaries under deformation could assist the design of strong and ductile bulk materials with hierarchical twinned structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call