Abstract

The performance of oxide photoanodes constructed with hematite (Fe2O3) nanostructures is among the best for low-cost photoelectrochemical water-splitting cells. However, due to limited light absorption capacity, a high photogenerated charge carrier recombination rate, and sluggish surface oxygen evolution reaction (OER) kinetic on the surface, the photocurrent density generated by bare hematite is lower than the theoretical value. To overcome these limitations, we fabricate hematite photoanodes with a dual metal–organic framework (MIL-88B@ZIF-67) coating, which greatly enhances light harvesting efficiency and the intrinsic charge carrier transport rate. Owing to these spectacular advantages, the optimized Fe2O3/MIL-88B@ZIF-67 photoanode affords a stable photocurrent density of 2.52 mA∙cm−2 at 1.23 V vs. a reversible hydrogen electrode (RHE) under one sun irradiation. The photocurrent density is significantly higher than that achieved with a bare Fe2O3 photoanode (0.27 mA∙cm−2). Most importantly, the cathodic shift of the Fe2O3/MIL-88B@ZIF-67 photoanode (119 mV) is larger than that of pristine Fe2O3. The measured incident photon-to-electron conversion efficiency of the Fe2O3/MIL-88B@ZIF-67 photoanode reaches 30.85% at 330 nm. A photocurrent decay of only 5% over 20 h indicates that the photoanode is also extraordinarily stable. We find that it is crucial to precisely control the number of MIL-88B@ZIF-67 coating layers to reduce the charge carrier recombination rate. We expect that our approach will be effective for the design of efficient and stable photoanodes for PEC water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.