Abstract

Photoelectrocatalytic methodologies are attractive for the longstanding storage of renewable energy via direct transformation of solar energy into fuels and chemicals. Controlled electrodeposition of thin and homogeneous nickel hydroxylphosphate (Ni-OH-Pi) nanoparticle films on Zr:BiVO4 photoanodes was achieved, wherein the Ni-OH-Pi co-catalyst increased the photoelectrochemical (PEC) water oxidation and stability of photoanodes comprising silver phosphate (AgPi) on Zr:BiVO4 (AgNi-OH-Pi/Zr:BiVO4). Evaluation of the optical, structural, and morphological properties revealed that the AgNi-OH-Pi/Zr:BiVO4 photoanodes exhibited enhanced PEC behavior with photocurrent densities (Jph) of ∼3.14 mA cm−2 for water oxidation with long-term stability over 60 h and ∼4.15 mA cm−2 for hydrogen peroxide (0.5 M H2O2) oxidation. The enhanced PEC of the fabricated AgNi-OH-Pi/Zr:BiVO4 photoanodes was attributed to the synergetic influence of strong visible-light absorption, enhanced charge separation–transport, and exceptional surface properties. Considering their comparatively superior photocatalytic activity, the AgNi-OH-Pi/Zr:BiVO4 photoanodes are potential electrode candidates in solar water splitting, dye-sensitized solar cells, and photocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.