Abstract
Vacancy and interface engineering are regarded as effective strategies to modulate the electronic structure and enhance the activity of metal chalcogenides. However, the practical application of metal chalcogenides in lithium-sulfur (Li-S) batteries is limited by their low conductivity, rapid decline in catalytic activity, and large volume variation during the discharging/charging process. Herein, bimetal sulfide (CoZn-S) nanosheet arrays with sulfur vacancies and dense heterointerfaces are proposed to accelerate sulfur conversion and improve the performance of Li-S batteries. Systematic investigations reveal that sulfur-vacancy and build-in interfacial field in CoZn-S facilitate the electron transfer and regulate the electronic structure. The well-designed 3D nanosheet array structures shorten the ion-transport pathway and inhibit the volume fluctuation of CoZn-S during the electrocatalysis process. Density functional theory studies confirm that the built-in interfacial field and sulfur vacancy can promote the thermodynamic formation and decomposition of Li2 S, thus improving their intrinsic activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.