Abstract

Male zebra finches (Taeniopygia guttata) learn to sing during a critical period in adolescence. We previously described a presynaptic protein, synelfin, whose mRNA is increased early in this critical period in a brain nucleus specifically implicated in song learning, lateral MAN (lMAN). In the current study, in situ hybridization was used to map this change in gene expression to the subregion of lMAN that projects to the robust nucleus of the archistriatum (RA), the principal motor output of the telencephalic circuit that controls song production. Using confocal immunofluorescence microscopy, we detected numerous puncta of synelfin immunoreactivity that apparently represent presynaptic terminals from lMAN in the RA of young males. Synelfin immunoreactivity in RA declined abruptly between 40 and 45 days of age, a time of major synaptic reorganization in RA. This change did not occur until about 10 days after the decline in synelfin mRNA in cell bodies within lMAN, indicating a relatively slow turnover of the protein in presynaptic terminals and suggesting that some of the functional changes that occur during the critical period may arise from regulatory decisions that were initiated a week or more earlier. Depriving birds of tutoring did not halt or delay the decline of synelfin mRNA in lMAN. This change in gene expression must not be a consequence of early song learning, but may reflect an innate or programmed step in song circuit development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call