Abstract

BackgroundThe production of glucose from cellulose requires cellulases, which are obtained from decomposing microorganisms such as fungi and bacteria. Among the cellulases, β-glucosidases convert cellobiose to glucose and have low concentration in commercial cocktails used for the production of second-generation (2G) ethanol. Genetic engineering can be used to produce recombinant β-glucosidases, and cyanobacteria may be interesting bioreactors. These photosynthetic microorganisms can be cultured using CO2 emitted from the first-generation ethanol (1G) industry as a carbon source. In addition, vinasse, an effluent of 1G ethanol production, can be used as a source of nitrogen for cyanobacteria growth. Thus, photosynthetic bioreactors cannot only produce cellulases at a lower cost, but also reduce the environmental impact caused by residues of 1G ethanol production.ResultsIn the present work, we produced a strain of Synechococcus elongatus capable of expressing high levels of a heterologous β-glucosidase from a microorganism from the Amazonian soil. For this, the pET system was cloned into cyanobacteria genome. This system uses a dedicated T7 RNA polymerase for the expression of the gene of interest under the control of a nickel-inducible promoter. The results showed that the pET system functions efficiently in S. elongatus, once nickel induced T7 RNA polymerase expression which, in turn, induced expression of the gene of the microbial β-glucosidase at high levels when compared with non-induced double transgenic strain. β-glucosidase activity was more than sevenfold higher in the transformed cyanobacteria than in the wild-type strain.ConclusionsThe T7 system promotes high expression levels of the cloned gene in S. elongatus, demonstrating that the arrangement in which an exclusive RNA polymerase is used for transcription of heterologous genes may contribute to high-level gene expression in cyanobacteria. This work was the first to demonstrate the use of cyanobacteria for the production of recombinant β-glucosidases. This strategy could be an alternative to reduce the release of 1G ethanol by-products such as CO2 and vinasse, not only contributing to decrease the cost of β-glucosidase production, but also mitigating the environmental impacts of ethanol industrial plants.

Highlights

  • The production of glucose from cellulose requires cellulases, which are obtained from decomposing microorganisms such as fungi and bacteria

  • Construction of pET expression system and insertion into S. elongatus PCC 7942 Studier and Moffatt developed a gene expression system based on the use of an exclusive RNA polymerase for the expression of heterologous genes [19]

  • There is no evidence that AMBGL17 gene codes for a true cellobiase, it has been functionally considered as one because its ORF region codes for a β-glucosidase belonging to GH3 family

Read more

Summary

Introduction

The production of glucose from cellulose requires cellulases, which are obtained from decomposing microorganisms such as fungi and bacteria. Genetic engineering can be used to produce recombinant β-glucosidases, and cyanobacteria may be interesting bioreactors. These photosynthetic microorganisms can be cultured using ­CO2 emitted from the first-generation ethanol (1G) industry as a carbon source. Agroindustrial by-products of vegetal origin have great potential for renewable and sustainable energy generation due to their abundance, biodegradability, hydrocarbon content and low-cost/benefit ratio [1]. One such example is sugarcane bagasse, a by-product of sugarcane-based bioethanol industry, with an annual estimated production of 540 Mt [2]. Integration of 2G ethanol production into already existing 1G ethanol biorefineries may be an attractive business [5] because of the possibility of (1) increasing ethanol production by 30%, without the need to expand the sugarcane-planted area; (2) reducing C­ O2 emissions during the production process when compared to 1G ethanol, (3) using the existing and consolidated logistics infrastructure for distribution and utilization (the same used for 1G ethanol production); (4) using by-products and wastewater from the production of 1G ethanol; and (5) production during the off-season of sugarcane [6, 7]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call