Abstract
Syndromic surveillance can help identify the onset, location, affected populations, and trends in infectious diseases quickly and efficiently. We developed an electronic medical record-based surveillance algorithm for COVID-19-like illness (CLI) and assessed its performance in 5 Massachusetts medical practice groups compared with statewide counts of confirmed cases. Using data from February 2020 through November 2022, the CLI algorithm was implemented in sites that provide ambulatory and inpatient care for about 25% of the state. The initial algorithm for CLI was modeled on influenza-like illness: an International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) diagnosis code for COVID-19 and an ICD-10-CM diagnosis code suggesting severe lower respiratory tract infection or ≥1 ICD-10-CM diagnosis code for upper or lower respiratory tract infection plus fever. We generated weekly counts of CLI cases and patients with ≥1 clinical encounter and visually compared trends with those of statewide laboratory-confirmed cases. The initial algorithm tracked well with the spring 2020 wave of COVID-19, but the components that required fever did not clearly detect the November 2020-January 2021 surge and identified <1% of weekly encounters as CLI. We revised the algorithm by adding more mild symptoms and removing the fever requirement; this revision improved alignment with statewide confirmed cases through spring 2022 and increased the proportion of encounters identified as CLI to about 2% to 6% weekly. Alignment between CLI trends and confirmed COVID-19 case counts diverged again in fall 2022, likely because of decreased COVID-19 testing and increases in other respiratory viruses. Our work highlights the importance of using a broad definition for COVID-19 syndromic surveillance and the need for surveillance systems that are flexible and adaptable to changing trends and patterns in disease or care.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.