Abstract

In this work, we explore the accuracy of quantum error correction depending of the order of the implemented syndrome measurements. CSS codes require that bit-flip and phase-flip syndromes be measured separately. To comply with fault-tolerant demands and to maximize accuracy, this set of syndrome measurements should be repeated allowing for flexibility in the order of their implementation. We examine different possible orders of Shor-state and Steane-state syndrome measurements for the [[7,1,3]] quantum error correction code. We find that the best choice of syndrome order, determined by the fidelity of the state after noisy error correction, will depend on the error environment. We also compare the fidelity when syndrome measurements are done with Shor states versus Steane states and find that Steane states generally, but not always, lead to final states with higher fidelity. Together, these results allow a quantum computer programmer to choose the optimal syndrome measurement scheme based on the system's error environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.