Abstract

Vascular endothelial cell dysfunction involving syndecan (SDC) proteoglycans contributes to acute sepsis-associated lung injury (ALI), but the exact SDC isoform involved is unclear. We aimed to clarify which SDCs are involved in ALI. A relevant gene expression dataset (GSE5883) was analysed for differentially expressed genes (DEGs) between lipopolysaccharide (LPS)-treated and control lung endothelial cells and for SDC isoform expression. Bioinformatic analyses to predict DEG function were conducted using R language, Gene Ontology, and the Kyoto Encyclopedia of Genes and Genomes. SDC2 and SDC4 expression profiles were examined under inflammatory conditions in human lung vascular endothelial cell and mouse sepsis-associated ALI models. Transcription factors regulating SDC2/4 were predicted to indirectly assess SDC involvement in septic inflammation. Of the DEGs, 224 and 102 genes were up- and downregulated, respectively. Functional analysis indicated that DEGs were involved in modulating receptor ligand and signalling receptor activator activities, cytokine receptor binding, responses to LPS and molecules of bacterial origin, regulation of cell adhesion, tumour necrosis factor signalling, and other functions. DEGs were also enriched for cytoplasmic ribonucleoprotein granules, transcription regulator complexes, and membrane raft cellular components. SDC4 gene expression was 4.5-fold higher in the LPS group than in the control group, while SDC2 levels were similar in both groups. SDC4 mRNA and protein expression was markedly upregulated in response to inflammatory injury, and SDC4 downregulation severely exacerbated inflammatory responses in both in vivo and in vitro models. Overall, our data demonstrate that SDC4, rather than SDC2, is involved in LPS-induced sepsis-associated ALI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.