Abstract

Circulating endotoxin is elevated in sepsis and plays a role in endothelial dysfunction whereas antithrombin is decreased by virtue of its consumption during complex formation with clotting factors and by proteolytic degradation by granulocyte elastase. Dysfunction of endothelium results in enhanced leukocyte rolling and diapedesis into tissues leading to edema formation and injury. Antithrombin exerts beneficial effects on endothelial function in sepsis. A direct anti-inflammatory action of anti-thrombin in inflammatory cells is exerted via heparan sulfate proteoglycans. In this study, we investigated whether antithrombin affects endotoxin-induced adhesion of neutrophils to human endothelial cells in vitro and whether glycosaminoglycans are involved in its signaling. Adhesion of human neutrophils to monolayers of umbilical vein endothelial cells was tested under static conditions. Endothelial cells were pretreated with endotoxin, interleukin-1, heparinase-I, chondroitinase-ABC or anti-syndecan-4-antibody. Endotoxin and interleukin-1 increased neutrophil adherence to human umbilical vein endothelial cells which was inhibited by antithrombin. Concomitant incubation with pentasaccharide abolished this effect of antithrombin. Treatment of endothelial cells with heparinase or chondroitinase led to higher adhesion and prevented effects of antithrombin. With antibodies to syndecan-4, enhanced adhesion of neutrophils was observed. As studied by Western blotting, endotoxin-induced signaling was diminished by antithrombin and the effect was reversible by chondroitinase or heparinase. From our results, we can conclude that endotoxin-induced adhesion of leukocytes to endothelium can be reversed by ligation of syndecan-4 with antithrombin's heparin-binding site and interferences with stress response signaling events in endothelium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.