Abstract

BackgroundInflammatory breast cancer (IBC), a particularly aggressive form of breast cancer, is characterized by cancer stem cell (CSC) phenotype. Due to a lack of targeted therapies, the identification of molecular markers of IBC is of major importance. The heparan sulfate proteoglycan Syndecan-1 acts as a coreceptor for growth factors and chemokines, modulating inflammation, tumor progression, and cancer stemness, thus it may emerge as a molecular marker for IBC.MethodsWe characterized expression of Syndecan-1 and the CSC marker CD44, Notch-1 & -3 and EGFR in carcinoma tissues of triple negative IBC (n = 13) and non-IBC (n = 17) patients using qPCR and immunohistochemistry. Impact of siRNA-mediated Syndecan-1 knockdown on the CSC phenotype of the human triple negative IBC cell line SUM-149 and HER-2-overexpressing non-IBC SKBR3 cells employing qPCR, flow cytometry, Western blotting, secretome profiling and Notch pharmacological inhibition experiments. Data were statistically analyzed using Student’s t-test/Mann-Whitney U-test or one-way ANOVA followed by Tukey’s multiple comparison tests.ResultsOur data indicate upregulation and a significant positive correlation of Syndecan-1 with CD44 protein, and Notch-1 & -3 and EGFR mRNA in IBC vs non-IBC. ALDH1 activity and the CD44(+)CD24(-/low) subset as readout of a CSC phenotype were reduced upon Syndecan-1 knockdown. Functionally, Syndecan-1 silencing significantly reduced 3D spheroid and colony formation. Intriguingly, qPCR results indicate downregulation of the IL-6, IL-8, CCL20, gp130 and EGFR mRNA upon Syndecan-1 suppression in both cell lines. Moreover, Syndecan-1 silencing significantly downregulated Notch-1, -3, -4 and Hey-1 in SUM-149 cells, and downregulated only Notch-3 and Gli-1 mRNA in SKBR3 cells. Secretome profiling unveiled reduced IL-6, IL-8, GRO-alpha and GRO a/b/g cytokines in conditioned media of Syndecan-1 knockdown SUM-149 cells compared to controls. The constitutively activated STAT3 and NFκB, and expression of gp130, Notch-1 & -2, and EGFR proteins were suppressed upon Syndecan-1 ablation. Mechanistically, gamma-secretase inhibition experiments suggested that Syndecan-1 may regulate the expression of IL-6, IL-8, gp130, Hey-1, EGFR and p-Akt via Notch signaling.ConclusionsSyndecan-1 acts as a novel tissue biomarker and a modulator of CSC phenotype of triple negative IBC via the IL-6/STAT3, Notch and EGFR signaling pathways, thus emerging as a promising therapeutic target for IBC.

Highlights

  • Inflammatory breast cancer (IBC), a aggressive form of breast cancer, is characterized by cancer stem cell (CSC) phenotype

  • Antihuman Notch-1 and epidermal growth factor receptor (EGFR) antibodies were from Santa Cruz Biotechnology (Santa Cruz, CA, USA), antihuman-CD44-FITC, anti-human-CD24-PE, IgG2b-FITC, IgG1-PE antibodies and rhEGF were obtained from Immunotools (Friesoythe, Germany), and anti-Syndecan-1 was from Biorad (Hercules, CA, USA)

  • As we have shown that Syndecan-1 knockdown reduced expression of IL-6 and IL-8, the predominant cytokines implicated in IBC stemness regulation, we evaluated whether this effect is Notch-dependent

Read more

Summary

Introduction

Inflammatory breast cancer (IBC), a aggressive form of breast cancer, is characterized by cancer stem cell (CSC) phenotype. Several lines of evidence indicate that the aggressive phenotype of IBC is due to enrichment for chemo- and radioresistant cancer stem cells (CSCs) [13]. These cells are characterized by selfrenewal, unlimited and high proliferative potential, expression of multidrug-resistance proteins, efficient DNA repair capacity and apoptosis resistance [14, 15]. CSCs can be distinguished from the bulk of the tumor by their expression of cell surface makers CD44 and CD24 (as a CD44(+)CD24(-/low) subpopulation) and based on the activity of ALDH1 [16] Due to their functional link to therapeutic resistance, CSCs represent an attractive therapeutic target to dampen tumor recurrence [15, 16]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call