Abstract
Syncoilin may have a role in linking the desmin-associated intermediate filament network of the muscle fiber with the dystrophin-associated protein complex (DAPC). We have evaluated syncoilin in a range of neuromuscular disorders including Duchenne and Becker muscular dystrophy, central core disease, congenital muscular dystrophies, and neurogenic disorders. Our results show that syncoilin immunolabeling is not only altered in muscle fibers with alterations in the DAPC but also in response to a variety of genetic defects, including those associated with proteins of the extracellular matrix and the intracellular Ca2+-release channel (ryanodine receptor). The pattern of syncoilin immunolabeling in these diseases appeared to reflect a rearrangement of the intermediate filament-associated cytoskeleton that characterizes both muscle fiber development and conditions in which the cytoskeletal organization of the muscle fiber is significantly affected. These observations raise the possibility that mutations in the gene encoding for syncoilin may underlie some forms of muscle disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.