Abstract
Synchrotron white beam X-ray topography studies carried out on 4H-SiC wafers characterized by locally varying doping concentrations reveals the presence of overlapping Shockley stacking faults generated from residual surface scratches in regions of higher doping concentrations after the wafers have been subjected to heat treatment. The fault generation process is driven by the fact that in regions of higher doping concentrations, a faulted crystal containing double Shockley faults is more stable than perfect 4H–SiC crystal at the high temperatures (>1000 °C) that the wafers are subject to during heat treatment. We have developed a model for the formation mechanism of the rhombus shaped stacking faults, and experimentally verified it by characterizing the configuration of the bounding partials of the stacking faults on both surfaces. Using high resolution transmission electron microscopy, we have verified that the enclosed stacking fault is a double Shockley type.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.