Abstract

The availability of analytical methods that utilize the very intense and bright X-rays from synchrotron radiation sources has fundamentally changed the way in which geoscientists, environmental scientists and soil scientists study complex environmental samples and decipher the chemical and biological processes that impact the speciation, transport and potential bioavailability of environmental toxins (Brown et al., 2006). Such samples are often mixtures of crystalline and amorphous phases in particle-sizes ranging from cm to nm, adsorbed metal ions and organic molecules, natural organic matter, microbial organisms, algae, plant materials and aqueous solutions. The processes that affect the chemical forms and environmental fate of contaminants in such mixtures range from surface adsorption, desorption, precipitation and dissolution reactions, often involving a combination of hydrolysis, ligand exchange and electron transfer, to biological interactions in which microbial organisms, algae or plants interact with mineral surfaces and environmental contaminants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.