Abstract

Magnesium batteries present high volumetric energy density and dendrite-free deposition of Mg, drawing wide attention in energy-storage devices. However, their further development remains stagnated due to relevant interfacial issues between the Mg anode and the electrolyte and sluggish solid-state diffusion kinetics of Mg2+ ions. Herein, an in situ conversion chemistry to construct a nanostructured Bi anode from bismuth selenide driven by Li+ is proposed. Through the combination of operando synchrotron X-ray diffraction, ex situ synchrotron X-ray absorption spectroscopy, and comprehensive electrochemical tests, it is demonstrated that the nanosize of the in-situ-formed Bi crystals contributes to the fast Mg2+ diffusion kinetics and highly efficient Mg-Bi alloingy/de-alloying. The resultant Bi anodes exhibit superior long-term cycling stability with over 600 cycles under a high current density of 1.0 A g-1 . This work provides a new approach to construct alloy anode and paves the way for exploring novel electrode materials for magnesium batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.