Abstract
Ultrasonic atomization is employed to generate size-controllable droplets for a variety of applications. Here, we minimize the number of parameters dictating the process by studying the atomization of a single drop pending from an ultrasonic horn. Spatiotemporally resolved X-ray phase-contrast imaging measurements show that the number-median sizes of the ejected droplets can be predicted by the linear Navier–Stokes equations, signifying that the size distribution is controlled by the fluid properties and the driving frequency. Experiments with larger pendant water drops indicate that the fluid–structure interaction plays a pivotal role in determining the ejection onset of the pendant drop. The atomization of viscoelastic drops is dictated by extended ligament formation, entrainment of air, and ejection of drop-encapsulated bubbles. Existing scaling laws are used to explain the required higher input amplitudes for the complete atomization of viscoelastic drops as compared to inviscid drops. Finally, we elucidate the differences between capillary wave-based and cavitation-based atomization and show that inducing cavitation and strong bubble oscillations quickens the onset of daughter drop ejection but impedes their size control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.