Abstract

Synchrotron-based radiation techniques are increasingly used in the field of flow condition measurements. As a complicated multiphase flow, cavitation has been investigated in a wide variety of industrial fields, to prevent damages on spillways at large dams or intensify the bacteria eradication rate during water treatments. To control the detrimental effects of cavitating flows, the dynamics of and mechanisms affecting cavitation development shall be visualized and identified in real-time. Due to the large reflection and scattering effects of multiphase flow, standard visible-light imaging technologies cannot penetrate vapor bubbles and provide extremely limited information. In this study, the synchrotron source emitted high-flux X-ray pulses are used to capture flow motion and visualize internal structures with sufficiently high spatial and temporal resolutions. The image processing procedures on raw x-ray images are developed using 2D Fourier transform (FT) and wavelet transform (WT) to implement the contrast enhancement and de-noising. Through the edge detection algorithm, tracking either seeded particles or phase interfaces inside the opaque multiphase flow can be achieved to perform the particle image velocimetry. With decomposing particle-only and particle-eliminated subplots from the X-ray phase-contrast image, the time-resolved velocity and void fraction fields are obtained simultaneously, paving a way for further flow condition analysis such as densitometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call