Abstract

Tracking enzyme localization and following the local biochemical modification of the substrate should help explain the recalcitrance of lignocellulosic plant cell walls to enzymatic degradation. Time-lapse studies using conventional imaging require enzyme labeling and following the biochemical modifications of biopolymers found in plant cell walls, which cannot be easily achieved. In the present work, synchrotron facilities have been used to image the enzymatic degradation of lignocellulosic biomass without labeling the enzyme or the cell walls. Multichannel autofluorescence imaging of the protein and phenolic compounds after excitation at 275 nm highlighted the presence or absence of enzymes on cell walls and made it possible to track them during the reaction. Image analysis was used to quantify the fluorescence intensity variations. Consistent variations in the enzyme concentration were found locally for cell cavities and their surrounding cell walls. Microfluidic FT-IR microspectroscopy allowed for time-lapse tracking of local changes in the polysaccharides in cell walls during degradation. Hemicellulose degradation was found to occur prior to cellulose degradation using a Celluclast® preparation. Combining the fluorescence and FT-IR information yielded the conclusion that enzymes did not bind to lignified cell walls, which were consequently not degraded. Fluorescence multiscale imaging and FT-IR microspectroscopy showed an unexpected variability both in the initial biochemical composition and the degradation pattern, highlighting micro-domains in the cell wall of a given cell. Fluorescence intensity quantification showed that the enzymes were not evenly distributed, and their amount increased progressively on degradable cell walls. During degradation, adjacent cells were separated and the cell wall fragmented until complete degradation.

Highlights

  • The development of plant biorefineries using lignocellulose biomass is a major challenge for the future in order to provide a substitute for using fossil carbon to produce biomolecules, bioenergy, and biomaterials (Maity, 2015)

  • Cell wall biochemical differences according to cell type were demonstrated by mid-infrared microspectroscopy using the microfluidic cell without enzyme

  • In the spectrum of parenchyma between vascular bundles, two bands were observed at 1,035 and 1,053 cm−1 with a higher intensity at 1,035 cm−1. These wavenumbers correspond to those observed in cellulose spectra (Maréchal and Chanzy, 2000), suggesting that these cell walls may be enriched in cellulose

Read more

Summary

Introduction

The development of plant biorefineries using lignocellulose biomass is a major challenge for the future in order to provide a substitute for using fossil carbon to produce biomolecules, bioenergy, and biomaterials (Maity, 2015). The bioconversion of biomass still remains economically challenging (Chundawat et al, 2011; Liguori and Faraco, 2016). A major current limitation is the incomplete deconstruction of lignocellulosic biopolymers. Lignocellulosic plants mainly consists of cell walls that may vary in composition depending on the plant species, tissues, or cell types. Several factors have been suggested to affect the bioconversion of lignocellulose (Anderson and Akin, 2008; Zhao et al, 2012; McCann and Carpita, 2015; Tan et al, 2016), with no consensus except for the detrimental role of lignin

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.