Abstract

The vast improvement of the sensitivity of modern ground-based air Cherenkov telescopes, together with the sensitive flux measurements at lower frequencies, requires accurate elaborations of the theoretical radiation models for flaring blazars. Here the flaring of TeV blazars due to the synchrotron-self Compton (SSC) process is considered. We assume that, at the moment t = t0, a flare in the emission knot occurs due to the instantaneous injection of monoenergetic (E0) ultrarelativistic electrons. The ultrarelativistic electrons are injected uniformly over the knot volume and at later times are subject to linear synchrotron radiation cooling in a magnetic field whose strength remains constant during the time evolution of the relativistic electrons.The generated synchrotron photons are subject to multiple Thomson-scattering off the cold electrons in the source giving rise to spatial photon diffusion. Optically thick and thin synchrotron radiation intensities and photon density distributions in the emission knot as functions of frequency and time are analytically determined. The synchrotron photons serve as target photons for the SSC process, which is calculated in the optically thin frequency range using the Thomson approximation of the inverse Compton cross section. It is shown that the optically thick part of the synchrotron radiation process provides a negligible contribution to the resulting SSC intensity at all frequencies and times.Because the high-energy TeV photons undergo no elastic multiple Compton scatterings, we neglect the influence of photon diffusion in the calculation of the SSC intensity and fluence distribution with energy. The SSC fluence exhibits a break at Ef = 15.8b −1/3 GeV from a ∝E −1/4 s -power law spectrum at lower photon energies Et ≤ Es ≤ Ef to a ∝E −2 s [1 − (Es/E0)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.