Abstract
Structural characterisations using the SAXS technique in a number of nanoheterogeneous materials and liquid solutions are reviewed. The studied systems are protein (lysozyme)/water solutions, colloidal ZnO particles/water sols, nanoporous NiO-based xerogels, hybrid organic-inorganic siloxane-PEG and PPG nanocomposites and PbTe semiconductor nanocrystals embedded in a glass matrix. These investigations also focus on the transformations of time-varying structures and on structural changes related to variations in temperature and composition. The reviewed investigations aim at explaining the unusual and often interesting properties of nanostructured materials and solutions. Most of the reported studies were carried out using the SAXS beamline at the National Synchrotron Light Laboratory (LNLS), Campinas, Brazil.
Highlights
A number of nanostructured materials and colloidal liquid solutions with interesting physical and chemical properties have been recently developed
Because of the high dilution of many nanometric phases and/or the often rather short transformation time involved in nanomaterial processing, complete small-angle X-ray scattering (SAXS) studies using classical X-ray sources are generally difficult and very time consuming
This paper reports the characteristics of the new synchrotron radiation facility of the National Synchrotron Light Laboratory (LNLS), Campinas, Brazil, describes its SAXS beamline, recalls the basic scattering theory and reviews a set of SAXS investigations dealing with structure and structural transformations of nanomaterials and colloidal solutions
Summary
A number of nanostructured materials and colloidal liquid solutions with interesting physical and chemical properties have been recently developed. Because of the high dilution of many nanometric phases and/or the often rather short transformation time involved in nanomaterial processing, complete SAXS studies using classical X-ray sources are generally difficult and very time consuming. SAXS beamlines in synchrotron radiation laboratories provide very intense monochromatic X-ray beams that make studies of weak scatterer materials possible and, in situ analyses of structural transformations with a high time resolution. This paper reports the characteristics of the new synchrotron radiation facility of the National Synchrotron Light Laboratory (LNLS), Campinas, Brazil, describes its SAXS beamline, recalls the basic scattering theory and reviews a set of SAXS investigations dealing with structure and structural transformations of nanomaterials and colloidal solutions. The LNLS staff designed, built and operates an open synchrotron radiation facility They assist the external users of the ten already installed VUV and X-ray beamlines. Information on the characteristics of the LNLS electron storage ring and VUV/X-ray beamlines and on the procedure for user access can be found in the Internet website www.lnls.br
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.