Abstract

The radiation spectrum for synchrotron-emitting electrons in galactic-sized Birkeland current filaments is analyzed. It is shown that the number of filaments required to thermalize the emission spectrum to blackbody is not reduced when a non-Maxwellian electron distribution is assumed. If the cosmic background radiation (CBR) spectrum (T=2.76 K) is due to absorption and re-emission of radiation from galactic-sized current filaments, higher-order synchrotron modes are not as highly self absorbed as lower-order modes, resulting in a distortion of the blackbody curve at higher frequencies. This is especially true for a non-Maxwellian distribution of electrons for which the emission coefficient at high frequencies is shown to be significantly less than that for a Maxwellian distribution. The deviation of the CBR spectrum in the high-frequency regime may thus be derivable from actual astrophysical parameters, such as filamentary magnetic fields and electron energies in the model. >

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call