Abstract

In 2O 3 thin films with preferred (4 0 0) orientation prepared by the spray pyrolysis method were studied by synchrotron radiation photoemission and ion scattering spectroscopes. O 1s, O 2s, In 4d core level and valence band spectra were monitored at photon energies 660, 245, 150, and 73 eV to see their evolution with UHV treatments (heating, sputtering and exposure of oxygen). Reduction of the surface layer to nearly metallic indium was found with thermal treatment at T ≥ 300 °C. This surface demonstrates high reactivity to reversible oxidation/reduction processes. This was evidenced by evolution of the O 2s core level peak and of the band gap emission intensity. In spite of such surface reduction it was found that within a probing depth of ≤10 Å the material displays spectral features characteristic of stoichiometric In 2O 3. We tentatively explain such behavior in terms of the In 2O 3 crystallographic structure and some conclusions relating to gas-sensing properties were made.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.