Abstract

Crystalline silicon is an ideal compound to test the current state of experimental structure factors and corresponding electron densities. High-quality structure factors have been measured on crystalline silicon with synchrotron powder X-ray diffraction. They are in excellent agreement with benchmark Pendellösung data having comparable accuracy and precision, but acquired in far less time and to a much higher resolution (sin θ/λ < 1.7 Å(-1)). The extended data range permits an experimental modelling of not only the valence electron density but also the core deformation in silicon, establishing an increase of the core density upon bond formation in crystalline silicon. Furthermore, a physically sound procedure for evaluating the standard deviation of powder-derived structure factors has been applied. Sampling statistics inherently account for contributions from photon counts as well as the limited number of diffracting particles, where especially the latter are particularly difficult to handle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.