Abstract

Nothosaurs form a subclade of the secondarily marine Sauropterygia that was well represented in late Early to early Late Triassic marine ecosystems. Here we present and discuss the internal skull anatomy of the small piscivorous nothosaur Nothosaurus marchicus from coastal to shallow marine Lower Muschelkalk deposits (Anisian) of Winterswijk, The Netherlands, which represents the oldest sauropterygian endocast visualized to date. The cranial endocast is only partially encapsulated by ossified braincase elements. Cranial flattening and lateral constriction by hypertrophied temporal musculature grant the brain a straight, tubular geometry that lacks particularly well-developed cerebral lobes but does potentially involve distinguishable optic lobes, suggesting vision may have represented an important sense during life. Despite large orbit size, the circuitous muscular pathway linking the basisphenoidal and orbital regions indicates poor oculomotor performance. This suggests a rather fixed ocular orientation, although eye placement and neck manoeuvrability could have enabled binocular if not stereoscopic vision. The proportionally large dorsal projection of the braincase endocast towards the well-developed pineal foramen advocates substantial dependence on the corresponding pineal system in vivo. Structures corroborating keen olfactory or acoustic senses were not identified. The likely atrophied vomeronasal organ argues against the presence of a forked tongue in Nothosaurus, and the relative positioning of external and internal nares contrasts respiratory configurations proposed for pistosauroid sauropterygians. The antorbital domain furthermore accommodates a putative rostral sensory plexus and pronounced lateral nasal glands that were likely exapted as salt glands. Previously proposed nothosaurian ‘foramina eustachii’ arose from architectural constraints on braincase development rather than representing functional foramina. Several modifications to brain shape and accessory organs were achieved through heterochronic development of the cranium, particularly the braincase. In summary, the cranium of Nothosaurus marchicus reflects important physiological and neurosensory adaptations that enabled the group’s explosive invasion of shallow marine habitats in the late Early Triassic.

Highlights

  • The Permian-Triassic (P-T) mass extinction profoundly influenced the evolutionary history of most taxa that survived the P-T event [1, 2]

  • Its limited preservation does not allow for a detailed assessment of this important braincase structure, nor of the perforations known to irrigate it with blood or innervate it, as was demonstrated for the placodont sauropterygian Placodus gigas [35]

  • Well-defined projections of the hypophysis or pituitary lobes are absent on the ventral aspect of the endocast. Such an undifferentiated hypophysis characterizes the cranial endocast of crocodylians and turtles [56,57,58,59,60]

Read more

Summary

Introduction

The Permian-Triassic (P-T) mass extinction profoundly influenced the evolutionary history of most taxa that survived the P-T event [1, 2]. Sauropterygia are a successful group of secondarily marine sauropsids of which the oldest recognized fossils date back to the Spathian sub-stage of the Olenekian [3, 4], about 5 million years after the P-T mass extinction [1] These initially small- to medium-bodied predators exhibited rapid dispersal in the newly formed epicontinental Muschelkalk Sea and along the shallow marine margins of the Tethyan realm [5] in a highly competitive arena shared with a diverse variety of other secondarily marine reptile taxa [1]. Lower Muschelkalk deposits have yielded a suite of related but morphologically distinct families [6], which demonstrates that the Sauropterygia were already established in close to all the higher trophic levels of the food chain [1, 7] Following this initial radiation, several sauropterygian taxa display intrageneric niche partitioning and speciation that proceeded up to the extinction of the non-plesiosaurian sauropterygians in the Rhaetian [8]. The explosive radiation that followed their still enigmatic origin make Sauropterygia a model clade for successful ecological adaptation to a vacated environment that likely reflects the influence of a rapid and nearly uninterrupted aquatic adaptation and trophic optimization

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call