Abstract

The Si L 2, 3 x-ray absorption near-edge structure (XANES) spectra of porous silicon nanomaterials and nanostructures with epitaxial silicon layers doped by erbium or containing germanium quantum dots are measured using synchrotron radiation for the first time. A model of photoluminescence in porous silicon is proposed on the basis of the results obtained. According to this model, the photoluminescence is caused by interband transitions between the energy levels of the crystalline phase and oxide phases covering silicon nanocrystals. The stresses generated in surface silicon nanolayers by Ge quantum dots or clusters with incorporated Er atoms are responsible for the fine structure of the spectra in the energy range of the conduction band edge and can stimulate luminescence in these nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.