Abstract

A consensus on the role of organic carbon moieties as the sorptive domains for nonionic organic compounds in soils is lacking due to the extremely complicated compositions of soil matrices. In this study, synchrotron radiation-based infrared microspectroscopy (IMS) was applied to in situ probe the distributions of four nitroaromatic compounds with varying hydrophobicity (namely, 1,3-dinitrobenzene, 1,5-dinitronapthalene, 3-nitrophenanthrene and 6-nitrobenzo[a]pyrene) and their associations with aliphatic and aromatic organic carbon moieties in soils. The technique revealed that both nitro group (NO2) from the nitroaromatic compounds and organic carbon moieties were unevenly distributed in the soils at the micron scale. The spatial distribution of nitro groups was positively correlated with that of aromatic carbon (C=C) (r>0.804, p<0.01), indicating that the aromatic moieties of soil organic carbon play a key role in sorption of nitroaromatic compounds to soils. Neither nitro groups nor aromatic carbon showed a close relationship with aliphatic carbon (CH) in the spatial distribution in the soils. Meanwhile, the nitro groups from 1,3-dinitrobenzene and 1,5-dinitronapthalene exhibited a significant correlation with clay minerals (OH) in their distributions (r>0.629, p<0.01) in the soils and the correlation became insignificant for the other two compounds with high hydrophobicity. This study for the first time provides micron-scale spectroscopic evidence for the roles of organic carbon moieties in the sorption of nonionic organic compounds to soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call