Abstract

Six Fourier-transform FIR spectra of the NH2 radical have been recorded at high resolution (0.001 cm(-1)) using synchrotron radiation on the AILES beamline at SOLEIL Synchrotron. Three different experimental discharge setups have been used to observe, in absorption, 1009 pure rotational transitions of NH2 in the vibrational ground state (000) and 170 pure rotational transitions within the first excited vibrational state (010). These results constitute a significant extension of the observed quantum numbers for these two states. The spectra permitted several couplings to be resolved (asymmetric coupling, spin-rotation coupling, hyperfine structure) for relatively highly excited energy levels. An effective fit has been realized using both standard Watson-S and -A reductions despite an abnormal centrifugal distortion effect for this light hydride.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.