Abstract

Trace-driven simulation of chip multiprocessor (CMP) systems offers many advantages over execution-driven simulation, such as reducing simulation time and complexity, and allowing portability, and scalability. However, trace-based simulation approaches have encountered difficulty capturing and accurately replaying multi-threaded traces due to the inherent non-determinism in the execution of multi-threaded programs. In this work, we present SynchroTrace, a scalable, flexible, and accurate trace-based multi-threaded simulation methodology. The methodology captures synchronization- and dependency-aware, architectureagnostic, multi-threaded traces and uses a replay mechanism that plays back these traces correctly. By recording synchronization events and dependencies in the traces, independent of the host architecture, the methodology is able to accurately model the non-determinism of multi-threaded programs for different platforms. We validate the SynchroTrace simulation flow by successfully achieving the equivalent results of a constraint-based design space exploration with the Gem5 Full-System simulator. The results from simulating benchmarks from PARSEC 2.1 and Splash-2 show that our trace-based approach with trace filtering has a peak speedup of up to 18.4ξ over simulation in Gem5 Full-System with an average of about 7.5ξ speedup. We are also able to compress traces up to 74% of their original size with almost no impact on accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.