Abstract

BackgroundSynchrony of coupled oscillations of ipsilateral hand and foot may be achieved by controlling the interlimb phase difference through a crossed kinaesthetic feedback between the two limbs, or by an independent linkage of each limb cycle to a common clock signal. These alternative models may be experimentally challenged by comparing the behaviour of the two limbs when they oscillate following an external time giver, either alone or coupled together.ResultsTen subjects oscillated their right hand and foot both alone and coupled (iso- or antidirectionally), paced by a metronome. Wrist and ankle angular position and Electromyograms (EMG) from the respective flexor and extensor muscles were recorded. Three phase delays were measured: i) the clk-mov delay, between the clock (metronome beat) and the oscillation peak; ii) the neur (neural) delay, between the clock and the motoneurone excitatory input, as inferred from the EMG onset; and iii) the mech (mechanical) delay between the EMG onset and the corresponding point of the limb oscillation. During uncoupled oscillations (0.4 Hz to 3.0 Hz), the mech delay increased from -7° to -111° (hand) and from -4° to -83° (foot). In contrast, the clk-mov delay remained constant and close to zero in either limb since a progressive advance of the motoneurone activation on the pacing beat (neur advance) compensated for the increasing mech delay. Adding an inertial load to either extremity induced a frequency dependent increase of the limb mechanical delay that could not be completely compensated by the increase of the neural phase advance, resulting in a frequency dependent increment of clk-mov delay of the hampered limb. When limb oscillations were iso- or antidirectionally coupled, either in the loaded or unloaded condition, the three delays did not significantly change with respect to values measured when limbs were moved separately.ConclusionThe absence of any significant effect of limb coupling on the measured delays suggests that during hand-foot oscillations, both iso- and antidirectionally coupled, each limb is synchronised to the common rhythm generator by a "private" position control, with no need for a crossed feedback interaction between limbs.

Highlights

  • Synchrony of coupled oscillations of ipsilateral hand and foot may be achieved by controlling the interlimb phase difference through a crossed kinaesthetic feedback between the two limbs, or by an independent linkage of each limb cycle to a common clock signal

  • The absence of any significant effect of limb coupling on the measured delays suggests that during hand-foot oscillations, both iso- and antidirectionally coupled, each limb is synchronised to the common rhythm generator by a "private" position control, with no need for a crossed feedback interaction between limbs

  • The position error was estimated as the phase delay between the metronome beat and the actual oscillation peak (Esposti, Cavallari, Baldissera 2006, submitted)

Read more

Summary

Introduction

Synchrony of coupled oscillations of ipsilateral hand and foot may be achieved by controlling the interlimb phase difference through a crossed kinaesthetic feedback between the two limbs, or by an independent linkage of each limb cycle to a common clock signal. The sign and size of the detected position error would in turn determine the direction (agonist vs antagonist) and the amount of the compensatory motor activation By this "private" position controller, each limb may overcome the mechanical contingencies by a continuous adjustment of the movement to the central motor command. This hypothesis has been recently tested by verifying how far subjects could maintain a null position error when the oscillation frequency or the mechanical context was changed. The compensatory phase-advance of the muscular activation in both the unloaded or loaded conditions could be accurately simulated by a neural network model that compares a central command (the intended position) to the limb actual position, acting as a closed-loop PID (Proportional, Integrative and Derivative) controller

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call