Abstract

Cyclic haemopoiesis in Grey Collie dogs is characterized by stable oscillations in all haemopoietic lineages. It is proposed that in these animals, in contrast to normal animals, the maturation process of haemopoietic (in particular granuloid) cells from the primitive progenitors to the functional cells is characterized by an abnormally strong synchrony. It is conjectured that the marrow maturation time has a very small variance compared with non-cyclic normal dogs. With a mathematical model of haemopoiesis it is shown that small fluctuations are amplified via regular feedback processes such that stable granuloid oscillations are established. Erythroid oscillations are induced indirectly by granuloid feedback to the stem cell pool. The model calculations further show that the synchrony hypothesis of bone marrow maturation can quantitatively explain the following experimental results: (1) the maintenance of stable cycles of granuloid and erythroid bone marrow and blood cells with a period of approximately 14 d; (2) the disappearance of granuloid and erythroid cycles during the administration of the colony stimulating factor rhG-CSF; (3) the reappearance of oscillations when the administration of CSF is discontinued; (4) the cessation of cycles during endotoxin application; and (5) the persistence of cycles during erythroid manipulations (bleeding anaemia, hypoxia, hypertransfusion). We therefore conclude that cyclic haemopoiesis is not caused by a defect in the regulatory control system but by an unusual maturation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.