Abstract

Currently, the actual mechanical properties of carbon fibers (CF) differ significantly from the theoretical values. This is primarily attributed to significant limitations imposed by structural defects, greatly hindering the widespread application of CF. To solve this problem, we used in situ growth of zeolitic imidazolate framework-8 (ZIF-8) and γ rays to modulate the core-shell of CF in this study. For the surface structure of CF during the process of γ irradiation, the organic structure within ZIF-8 gradually degrades and forms a cross-linking structure with the surface defects of the CF. This process significantly enhances the binding strength between inorganic material from the postdecomposition of ZIF-8 and the carbon layer on the surface of CF, repairing the surface defects. For the internal structure of CF, γ irradiation can improve the orientation of the internal micropores of CF and increase the degree of internal graphitization of CF. In this paper, an in-depth analysis of CF before and after repair was conducted by using characterization techniques such as nanoindentation and ultrasmall angle X-ray scattering (USAXS). Compared to unmodified CF, its mechanical properties improved by approximately 19.99%, which exceeds that in approximately 95% of similar works in the field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.