Abstract

Constructing catalytic membrane simultaneously displaying high permeability, selectivity and antifouling performance in water treatment remains challenging. Herein, the surface and pore channels of the ceramic membrane were co-functionalized with nitrogen doped carbon supported Fe catalyst (CN-F), and the Fe content was varied to investigate its effect on performance of CN-F coupled with peroxymonosulfate (PMS) activation (CN-F/PMS) for water treatment. Results confirmed the introduced Fe (in Fe-N coordination form) greatly enhanced the permeability, selectivity and fouling resistance of CN-F. Optimal CN-F3/PMS achieved 96.5% removal and 52.1% mineralization of sulfamethoxazole in short retention duration (2.7 min), whose performance was 5.4 and 6.7 times higher than that of nitrogen doped carbon functionalized ceramic catalytic membrane (CN/PMS) and CN-F3 filtration alone, respectively. CN-F3/PMS also efficiently inhibited fouling on both surface and pores with 2.8 and 2.4 times lower flux loss than that of CN/PMS and CN-F3 filtration alone, respectively. Moreover, CN-F3/PMS displayed superior performance in long-term treatment of real coking wastewater. The outstanding performance of CN-F was mainly attributed to the dual role of supported Fe, which served as hydrophilic site for enhanced water permeation and major active site for PMS adsorption and reduction into reactive species (mainly high-valent Fe(IV)=O species) towards pollutant elimination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.