Abstract

Traditional low-power wireless protocols maintain distributed network state to cope with link dynamics. Modeling the protocol operation as a function of network state is difficult as the state is frequently updated in an uncoordinated fashion. Recent protocols use synchronous transmissions (ST): multiple nodes send simultaneously towards the same receiver, as opposed to pairwise link-based transmissions (LT). ST enable efficient multi-hop protocols with little network state.We studied whether ST in Glossy enable simple yet accurate protocol modeling [10]. Based on extensive testbed experiments and statistical analyses, we found that: (i) unlike LT, packet receptions and losses with ST largely adhere to a sequence of independent and identically distributed (i.i.d.) Bernoulli trials; (ii) this property greatly simplifies accurately modeling ST-based protocols, as we demonstrated by obtaining model errors below 0.25% in energy for the Glossy-based Low-Power Wireless Bus (LWB).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.