Abstract

A numerical investigation of the chaotic rotation of large planetary satellites before their synchronous spin-orbital resonance locking with regard to tidal friction is carried out. The rotational dynamics of seven large satellites greater than 1000 km in diameter and with known inertial parameters (Io, Europa, Ganymede, Callisto (J1–J4), Tethys (S3), Iapetus (S8), and Ariel (U1)) in the epoch of synchronous resonance locking is modeled. All of these satellites have a small dynamic asymmetry. The planar case is considered in which the satellite’s axis of rotation is orthogonal to the plane of orbit. The satellites possessing an initial rapid rotation pass through various resonant states during the tidal evolution. Here, the probability of their locking into these states exists. The numerical experiments presented in this paper have shown that, with a rather high arbitrariness in the choice of initial states, the satellites during the course of the tidal evolution of their rotational motion have passed without interruption through the regions of the 5: 2, 2: 1, and 3: 2 resonances in the phase space and are locked into the 1: 1 resonance. The estimate for the tidal deceleration time is obtained both theoretically and on the numerical experimental basis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call