Abstract

A novel spreading code-set based on the prime code (PC) families, referred to as `transposed modified prime codes (T-MPC)', is proposed for synchronous optical code-division multiple-access (OCDMA) networks. The new code-set is constructed algorithmically to enhance and simplify its implementation. The proposed code-set performance is compared with existing spreading code families in terms of correlations, bit-error rate (BER) and cardinality. The proposed optical spreading code family doubles the cardinality as compared to existing PC families. This also implies that greater number of users can be accommodated in the network. Since there is no longer a time-shift feature in T-MPC like in conventional modified prime codes (MPC), the code is not predictable and thus even more secure. However, the code structure is similar to MPC, thus its employment in a system running MPC will be nondestructive. The code is also compatible with low-weight MPC. The results indicate that the proposed code-set has properties to enhance the OCDMA network capacity remarkably.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.