Abstract

This paper presents a novel way to obtain parameters of synchronous machine equivalent circuits from standstill frequency response data using a hybrid genetic algorithm. The genetic algorithm is capable of finding a global minimum within a search interval of the fitness function used to match the equivalent circuit and the measured machine transfer functions, notwithstanding the initial guess of the identification process. Therefore, methods such as the maximum likelihood estimation technique could be substantially enhanced. Results obtained in the identification procedure show that good matching can be obtained with either negative or positive leakage inductance values. These results cast some light on the possible physical meaning that circuit parameters may have. Finite-element modeling is used here to determine the transfer functions of a turbine generator. This approach is consistent with the general aim of obviating the requirement of field testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.