Abstract

Conventional structural materials and damping materials both don't combine excellent mechanical and damping properties at the same time, which makes them unable to meet the practical demand. Study on structural damping composites that possess higher mechanical and damping properties is becoming a hot research direction. Meanwhile dynamic mechanical analysis (DMA) could provide information on the mechanical and damping properties via storage modulus and loss factor, respectively, which makes it one of the most convenient and effective research methods on structural damping composites. In this paper, composites with polyamide non-woven fabrics (PNF) and functionalized PNF with crystalline thermoplastic polymer polyvinylidene fluoride (PVDF) and nanoscale carbon material vapor grown carbon fiber (VGCF) as interleaf materials are prepared firstly, then dynamic mechanical behaviors are measured and the microstructure is analyzed to study the effect of different interlayers on the mechanical and damping properties of the co-cured composites. The results indicate that PNF could improve the loss factors without significantly reducing the storage modulus, moreover, functionalized PNF with PVDF and VGCF are capable of further improving storage modulus and loss factors synchronously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.